AI-Powered Experiences
Connect | Automate | Scale

Over the last few years, Generative AI has played a significant role across organizations. It is also very  interesting that just 2% expect few to no barriers to bringing Generative AI into their organization.

In IT, change is the only constant. We migrated to the cloud, we’re managing an explosion of customer data, and we’re starting to automate our processes. We expect this AI inflection point more nervous than other big waves of innovation. To manage these inflection points it is very important to streamline our AI journey.

Our first priority is to unlock our data and make it discoverable. We need to create new experiences to unlock your data, from anywhere, and to make it discoverable. This includes on-premises, hybrid/cloud data, as well as data in any format, including structured and unstructured data. Integration/APIs help you to build a framework to unlock data across all of your disparate systems.

Since data is everywhere and sources are spread across your organization. It is a human-centric task. To mitigate these human-centric tasks we need to create workflows & automate manual tasks across structured and unstructured data with minimal coding. This can be achieved by leveraging APIs, data cloud, and automation tools like RPA and IDP.

Next, we talked about the importance of building securely. With a backlog of ongoing projects, we need a way to scale the use of these API building blocks across the business, with security and governance. We need a way to protect and implement security policies across every API in your digital space before you launch your next application, like an e-commerce platform or even a mobile app. Universal API Management allows us to bring security and governance to any API.

And finally, we need just one more piece – an AI model. AI model interacts with LLMs via an API. As we make our inventory data discoverable, composable, and automated – we can build those experiences using AI models. when we bring these technologies together with an LLM, we can create intelligent AI-driven experiences. We can implement predictive and generative capabilities by using discoverable and consumable data via APIs.

Generative AI (GenAI): Security

Generative AI (GenAI): Security

Generative artificial intelligence (generative AI) is a new buzzword across the industries. Generative AI is an artificial intelligence technology that can produce various types of content, including text, imagery, audio, and synthetic data.

All organizations are investing large amounts of their budget in GenAI technology. Recently Amazon completed a $4 billion investment in generative AI development. As per a recent study barely scratching the Generative AI use case and opportunity.

Before implementing any Generative AI solution make sure you completely understand the organization’s business problem to implement Gen AI solution, because any generative AI solution takes a lot of money, time, and brain power.

Evolution of LLMs

Generative AI has just blown up within the last year or two years, but it has been around for decades. Generative AI is based on large language models (LLM).  LLM has been evolving for a while technically five to ten years approx. All companies (like AWS, Microsoft, and Open AI) are presenting their standard based on their business requirements. Here is the evolution story of LLMs & GenAI.

AI Attacks

There are four types of AI attacks.

  1. Poisoning – This AI attack can lead to the loss of reputation and capital. This is a classic example of thrill-seekers and hacktivists injecting malicious content which subsequently disrupts the retraining process.
  2. Inference – This AI attack can result in the leakage of sensitive information. This attack aims to probe the machine learning model with different input data and weigh the output.
  3. Evasion – This AI attack can harm physical safety. This type of attack is usually carried out by Hacktivists aiming to get the product of a competitive company down and has the potential to seriously harm the physical safety of people.
  4. Extraction – This AI attack can lead to insider threats or cybercriminals. Based on this the attacker can extract the original model and create a stolen model to find evasion cases and fool the original model.

Type of AI Malware

  • Black Mamba – Black Mamba utilizes a benign executable that reaches out to a high-reputation API (OpenAI) at runtime, so it can return synthesized, malicious code needed to steal an infected user’s keystrokes. It has the below properties.
    • ChatGPT Polymorphic Malware
    • Dynamically Generates Code
    • Unique Malware code
  • Deep Locker – The Deep Locker class of malware stands in stark contrast to existing evasion techniques used by malware seen in the wild. It hides its malicious payload in benign carrier applications, such as video conference software, to avoid detection by most antivirus and malware scanners. It has the below properties.
    • Targeted identification
    • Logic detonation Mechanism
    • Facial and voice recognition
  • MalGAN – Generative Adversarial Networks serve as the foundation of Malware GAN and are used to create synthetic malware samples. For Mal-GAN’s complex design to function, it is made up of three essential parts: the generator, substitute detector, and malware detection system based on machine learning. It has the below properties.
    • Generative Adversarial Malware
    • Bypass ML-based Detections
    • Feed-forward Neural Networks

AI Security Threats

  • Deepfake Attacks
  • Mapping and Stealing AI Models
  • Spear Phishing (Deep Phishing)
  • Advanced Persistent Threats (APTs)
  • DDoS and Scanning of the Internet.
  • Data poisoning AI Models
  • PassGAN and MalGAN
  • Auto Generation of Exploit code
  • Ransom Negotiation Automation
  • Social Engineering

AI Security Defense Strategy

As we learned in AI several AI malware and threats are impacting different parts of the AI ecosystem. Our AI must be smart enough that it detects its threats and mitigates risk. ML-based malware detectors detect risk and generate insights into its severity. Here are a few approaches should implement to protect your AI systems.

  • Intelligent Automation
    • Automated response and Mitigation
    • Indicators of Compromise (IOCs) extraction and correlation
    • Behavioral and anomaly detection
  • Precision Approach
    • High Accuracy and Precision
    • Identify, Understand, and Neutralize
    • Prioritize Risk
  • Define the Area for defense
    • Identify the most vulnerable area.
    • Apply a broad spectrum of defense.
    • System resiliency

AI involvement in security

  • Malware detection – AI systems help prevent phishing, malware, and other malicious activities, ensuring a high-security posture and analyzing any unusual behavior.
  • Breach risk prediction – Identify the most vulnerable system and protect against any data leak.
  • Prioritize critical defense – AI-powered risk analysis can produce incident summaries for high-fidelity alerts and automate incident responses, accelerating alert investigations.
  • Correlating attack patterns – AI models can help balance security with user experience by analyzing the risk of each login attempt and verifying users through behavioral data, simplifying access for verified users
  • Adaptive response – AI model automated response and generate an alert if the system identifies any threats. This creates the first layer of security defense.
  • Applied Machine learning – AI models are self-train. If models identify any new risk pattern apply new security models to all protected systems.